Since January 2015 a new structural division – Sector of Raman spectroscopy (Centre “Nanobiophotonics”) – has started its activities at FLNP. Studies are performed within the JINR theme “Multimodal platform for Raman and nonlinear optical microscopy and microspectroscopy for condensed matter studies”.

Along with neutron and synchrotron research, Raman spectroscopy and microscopy occupy its own niche in the study of properties, structure and diagnostics of condensed matter. Raman spectroscopy refers to scattered light from a sample that exhibits a frequency shift reflecting the energy of specific molecular vibrations within the sample of interest. In this manner, it provides a detailed chemical composition of the sample – a chemical fingerprint in essence. The technique has wide potential in the biomedical sciences as it may be applied to samples over a wide size range from single cells through to intact tissue. One of the major challenges of Raman spectroscopy is the extremely low intensity of the emitted signal. Thus, considerable effort has focused on enhancing the ratio of signal to background noise including the CARS (Coherent antiStokes Raman Scattering) and SERS (Surface Enhanced Raman Scattering) enhanced options of the spontaneous Raman scattering.

CARS microscopy provides an advanced, minimally invasive (nondestructive) and label-free technique with high sensitivity and high lateral spatial resolution capable of selective chemical imaging of major types of macromolecules: proteins, lipids, nucleic acids, etc. Like spontaneous Raman, CARS probes vibrational modes in molecules and does not require exogenous dyes or markers, which is advantageous in imaging small molecules for which labeling may strongly affect their molecular properties.

The advantages of CARS spectroscopy: since an anti-Stokes wave is generated at higher frequencies (shorter wavelengths shifted to the blue region) there is practically no effect of luminescence and the vibrational modes of molecules are most pronounced. In addition, scattering on phase-matching coherently excited vibrations leads to a significant increase (by several orders of magnitude) in the intensity of scattered light as compared with that of spontaneous Raman scattering. Furthermore, when studying samples both in the mode of spontaneous scattering and CARS spectroscopy there is no need for fluorescent labels which always cause photobleaching. Also, using for pumping lasers emitting in the near-IR region, CARS is also a noninvasive method for studying samples, which is especially important when analyzing biological samples. It also should be noted that CARS microscopy allows us to realize high-speed recording of spectrally selective images, corresponding to specific vibrational states of molecules. All these advantages have made CARS spectroscopy and microscopy a highly effective and promising analytical method and tool widely used in various fields of natural and applied sciences (chemistry, physics, biomedicine, pharmaceuticals, materials science, geology, and others).


SERS is a plasmonic-based process characterized as a label-free and high-sensitive spectroscopy. This technique was developed to detect extremely small quantities of molecules (up to the single-molecule level) by determining their characteristic Raman signal. The high sensitivity of SERS is mainly due to electromagnetic interaction given by an effective, evanescent field enhancement on the metal surface based on the excitation of surface plasmon-polariton modes. By generating metallic nanostructures with different shapes/dimensions, it is possible to tune the plasmon resonance.

Advisor to Directorate of the Frank Laboratory of Neutron Physics, JINR

Institution, address: Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research, 141980 Dubna, Russia

 

Tel.: +7 (49621) 6-52-91

Fax: +7 (49621) 6-51-19

E-Mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Telex: 911621 DUBNA SU

Born: 25 августа 1935 г., г. Галич Костромской обл.

 

Education: (years, institutions, degrees, title of thesis)

  • 1953 – 1959 – Московский энергетический институт. Диплом с отличием. Специальность – теплофизика.

 

Professional career:

  • 1959 – 1966 – ЛНФ ОИЯИ работа по созданию и пуску импульсного реактора на быстрых нейтронах ИБР, импульсного бустера ИБР + микротрон в должности инженера, старшего инженера, начальника смены;
  • 1966 – 1977 – ЛНФ ОИЯИ работа по созданию реактора ИБР-2 в должности главного инженера проекта ИБР-2;
  • 1977 – 1986 – ЛНФ ОИЯИ работа в должности главного инженера реактора ИБР-2: физический и энергетический пуск реактора, эксплуатация реактора при работе на физический эксперимент;
  • 1986 – 2007 – ЛНФ ОИЯИ – главный инженер ЛНФ;
  • 1995 – 2011 – ЛНФ ОИЯИ – руководитель проекта модернизации реактора ИБР-2 (разработка концепции модернизации ИБР-2, реализация проекта модернизации);
  • 2010 – 2011 – ЛНФ ОИЯИ – руководитель физического пуска модернизированного реактора ИБР-2М;
  • 2007 – 2011 – ЛНФ ОИЯИ – советник при дирекции ЛНФ.

 

Publications: 30 научных публикаций.

Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Tel.: +7 (49621) 6-59-15
Fax: +7 (49621) 6-53-62
E-Mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Born: 6 of June 1977, Skopin, Ryazan reg., USSR

 

Education:

  • 1994 - 2000 Tula State University, bachelor degree of techniques and technology in direction "Information science and Computation Techniques", qualification Physicist in the speciality "Physics"
  • 2006 Candidate of Sciences (Phys. & Math.)
  • 2005 - 2006 International Institute of Management LINK, Zhukovsky, Moscow reg,. Diploma of professional retraining on Business Management

 

Work:

  • 2000 - 2004 Junior Scientist
  • 2004 - 2005 Scientist
  • 2005 - present time Scientist - Head of Group of Cold Moderators and Radiation Investigations
  • 2007 – present time Head of Department of Spectrometers Complex

 

Scientific interests:

  • Monte Carlo simulation of neutron, gamma and electrons transport
  • Optimization and construction of neutron cryogenic moderators
  • Investigation of influence of high energy neutrons and gamma quanta to hydrogenous materials at low temperature

 

Some of last publications:

  • E. Shabalin, E. Kulagin, S. Kulikov, V. Melikhov. Experimental study of spontaneous release of accumulated energy in irradiated ices. Radiation Physics and Chemistry. Volume 67, Issues 3-4 , 2003, 315-319
  • E. Kulagin, S. Kulikov, V. Melikhov, E. Shabalin Radiation Effects In Cold Moderator Materials: Experimental Study of Accumulation and Release of Chemical Energy. Nuclear Instr. and Methods in Physics Research, B. 2004, Vol 215/1-2, 181-186
  • K.N. Nunighoff, Ch. Pohl, V. Bollini, H. Conrad, D. Filges, F.Goldenbaum, S. Koulikov, at al. Ice moderator experiments at very low temperatures, Eur. Phys. J. A 22, 519-528 (2004)
  • I K. Neuninghoff, Ch. Pohl, V. Bollini, A. Bubak, S. Kulikov at. all, Investigations of the neutron performance of a methane hydrate moderator. Nuclear Instruments and Methods in Physics Research A 562 (2006) pp. 565–568

Chief Engineer of the Frank Laboratory of Neutron Physics, JINR

 

Institution, address: Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research, 141980 Dubna, Russia

Tel.: +7 (49621) 6-51-86

Fax: +7 (49621) 6-54-29

E-Mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Telex: 911621 DUBNA SU

Born: 20 сентября 1958 года, г. Балхаш, Карагандинская область, Казахстан.

 

Education: (years, institutions, degrees, title of thesis)

  • средняя школа № 21 г. Алмалык Ташкентской области (золотая медаль); 
  • 1975 – 1981 Факультет «Энергомашиностроение», Московское высшее техническое училище им. Н.Э. Баумана, специальность – ядерные энергетические установки (диплом с отличием).

 

Professional career:

  • 1981 – 1983 – Сухумский физико-технический институт, инженер;
  • 1984 – 1987 – исследовательский реактор ИБР-2 ЛНФ ОИЯИ, инженер, старший инженер, начальник смены;
  • 1988 – 2007 – главный инженер реактора ИБР-2;
  • 2003 – 2007 – заместитель главного инженера ОИЯИ по ядерной и радиационной безопасности (по совместительству);
  • с 2007 года – главный инженер ЛНФ ОИЯИ, советник дирекции ОИЯИ по ядерной и радиационной безопасности.

 

Publications: Автор и соавтор работ в области обеспечения безопасной эксплуатации исследовательских ядерных установок.

List of publications

 

  • Co-editor of the special issue of the Textures and Microstructures "Proceedings of the workshop Mathematical Methods of Texture Analysis". 1996, V 25, Numbers 2 -- 4, pp. 71 -- 262.
  • T.I. Bukharova, A.S. Kapcherin, D.I. Nikolayev, I.I. Papirov, T.I. Savyolova, V.A. Shkuropatenko: A New Method of the Reconstructing the Grain Orientation Distribution Function. Axial Texture. Phys. Met. Metall. 1988, V 65, No. 5, 94-99.
  • D.I. Nikolayev, T.I. Savyolova, K. Feldman: Approximation of Orientation Distribution of Grains in Polycrystalline Samples by Means of Gaussians. Textures and Microstructures 1992, 19, 9-27.
  • P. Stark, D.I. Nikolayev: Toward Tubular Tomography. :J. Geophysical Research 1993, Vol. 98, No. B5, 8095-8106.
  • D.I. Nikolayev: Numerical Optimization of the Series Method. Materials Science Forum Vol. 157-162, 1994, 393-400
  • D.I. Nikolayev, T.I. Savyolova: Approximation of the ODF by Gaussians for Sharp Textures. Materials Science Forum. Vol. 157-162, 1994, 387-392
  • D.I Nikolayev, K. Walther. Absorption Correction for Non-Standard Geometry for Pole Figure Measurements. Materials Science Forum. Vol 157-162, 1994, 381-386.
  • T.I. Bukharova, T.I. Ivanova, D.I. Nikolayev, T.I. Savyolova: Approximation of Orientation Distribution of Grains in Polycrystalline Samples by Means of Gaussians. Materials Science Forum. Vol 157-162, 1994, 323-326.
  • D.I. Nikolayev, K. Ullemeyer: A Note on Preprocessing of Diffraction Pole Density Data : J. Appl. Cryst. 27, 1994 517-520
  • D.I Nikolayev, K. Ullemeyer. The effect of smoothing on ODF reproduction. Textures and Microstructures 1996, Vol 25, pp 149-157.
  • V.V. Luzin, D.I. Nikolayev. On the Errors of the experimental Pole Figures. Textures and Microstructures 1996,Vol 25, pp 121-128.
  • V.V. Luzin, D.I. Nikolayev. The Errors of Pole Figures Measured by Neutrons. Proceedings of the International Conference on Textures of Materials.
    International Academic Publishers. 1996, pp 140-145.
  • D.I. Nikolayev, T.I. Savyolova: Normal distribution on the rotation group SO(3) Textures and Microstructures 1997, V. 29, 201-233
  • H. Schaeben, D.I. Nikolayev. The Central Limit Theorem in Texture Component Fit Method. Acta Applicandae Mathematicae 1998, V. 53, pp 59-87.
  • H. Schaeben, D.I. Nikolayev. Dual Forms of Texture Analysis. : Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12) August 9-13, 1999, Montreal, Quebec, Canada, NRC Research Press, Ottawa, Ontario, Canada. Vol. 1 pp 156-161
  • D.I. Nikolayev, V.V. Luzin, T. Lychagina, A.A. Dzjuba, V.A. Kogan, J. Te Nijenhuis X'Pert Texture: Overview of a Software Package for Quantitative Texture Analysis. : Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12) August 9-13, 1999, Montreal, Quebec, Canada, NRC Research Press, Ottawa, Ontario, Canada. Vol. 1 pp 241-246
  • T.A. Lychagina, D.I. Nikolayev: Influence of the Texture on the AL-6%Mg Alloy Deformation. Textures and Microstructures 1999, V. 33, 111-123
  • D.I. Nikolayev and H. Schaeben. Characteristics of the ultrahyperbolic differential equation governing pole density functions.
    Inverse Problems, 1999, V. 15, # 6, 1603-1619.
  • T. M. Ivanova and D. I. Nikolayev. New Standard Function for Quantitative Texture Analysis. Phisica Status Solidi 2001, 228, No. 3, 825-836.
  • T.A. Lychagina, D.I. Nikolayev. Model investigation of the grain number to apply quantitative texture analysis averaging, Physica Status Solidi (a), 195, No. 2 (2003), 322-334.
  • T.A. Lychagina, D.I. Nikolayev. Influence of grain number on graphite quantitative texture study, Textures and Microstructures, 35, No. 3-4 (2003) 197-206.
  • D.I. Nikolayev, T.A. Lychagina, A.V. Nikishin, V.V. Yudin, " Study of error distribution in measured pole figures", Trans Tech Publications, Proc. of ITAP2, Metz, France, 2004, 77-81
  • D.I. Nikolayev, T.A. Lychagina, A.V. Nikishin, V.V. Yudin, Investigation of measured pole figures errors, Materials Science Forum Vols. 495-497, Sep. 2005, Trans Tech Publications Proc. of ICOTOM 14, pp. 307-312
  • Scheffzük, C., Siegesmund, S., Hoffmann, A. & Nikolayev, D.I. (2006). Texture and residual strain in Carrara marbles measured by TOF neutron diffraction. In: Fort, R., Alvarez de Buergo, M., Gomez-Heras, M. & Vazquez-Calvo, C. (Eds.): Heritage, Weathering and Conservation 2, 547-554.
  • Scheffzük, Ch, Siegesmund, S., Nikolayev, D.I. & Hoffmann, A. (2007). Texture, spatial and orientation dependence of internal strain in marble: A key to understand the bowing of marble panels? In: P?~ikryl, R. & Smith, B.J. (eds.): Building Stone Decay: From Diagnosis to Conservation. Spec. Publs Geol. Soc. London 271, 237-249.
  • Ullemeyer, K., Nikolayev, D.I. & Christensen, N.I. (2006). Extrapolation of velocity-pressure trends in rocks containing microcracks.- Submitted to Geophysical Research Letters.
  • Nikolayev D., Siegesmund S., Mosch S. and Hoffmann A. (2006) 3D Modeling of Joint Distribution. Submitted to Engineering Geology.
  • Nikolayev D., Siegesmund S., Mosch S. and Hoffmann A. (2007) Modell-based prediction of unfractured rock masses. ZDGG, 158/3, p. 483-490.
  • Siegesmund S., Nikolayev D., Mosch S. and Hoffmann A. (2007) 3D-Block-Expert. Natursteinabbau aktuell. Naturstein, 62/5, p. 102-107.
  • Nikolayev D., Siegesmund S., Mosch S. and Hoffmann A. (2007) Quantification of nfractured rock masses. LITOS, 92/5, p. 94-111.
  • Lychagina T.A., Nikolayev D., Wagner F (2007) Using Individual Spectra Simulation for a Pole Figures Errors Study. Submitted to : J. Appl. Cryst
  • Siegesmund, S., Mosch S. Scheffzük, Ch, Nikolayev, D.I. (2007). The bowing potential of granitic rocks. .Accepted to Environmental Geology.

 

Besides 18 papers in Russian.